18 research outputs found

    The role of the self-steepening effect in soliton compression due to cross-phase modulation by dispersive waves

    Get PDF
    We consider the compression and amplification of an ultrashort soliton pulse through the interaction with a weaker velocity-matched dispersive wave, in the so-called optical event horizon regime. We demonstrate that in this interaction scheme the self-steepening effect plays the key role in producing a strong soliton compression. While the interaction between the two pulses is mediated through cross phase modulation, the self-steepening effect produces an energy exchange, which enhances soliton compression. We provide numerical results and an analytical expression for energy transfer and compression rate

    Efficient all-optical control of solitons

    Get PDF
    We consider the phenomenon of an optical soliton controlled (eg. amplified) by a much weaker second pulse which is efficiently scattered at the soliton. An important problem in this context is to quantify the small range of parameters at which the interaction takes place. This has been achieved by using adiabatic ODEs for the soliton characteristics, which is much faster than an empirical scan of the full propagation equations for all parameters in question

    Stabilization of optical pulse transmission by exploiting fiber nonlinearities

    Get PDF
    We prove theoretically, that the evolution of optical solitons can be dramatically influenced in the course of nonlinear interaction with much smaller group velocity matched pulses. Even weak pump pulses can be used to control the solitons, e.g., to compensate their degradation caused by Raman-scattering

    Adiabatic theory of champion solitons

    Get PDF
    We consider scattering of small-amplitude dispersive waves at an intense optical soliton which constitutes a nonlinear perturbation of the refractive index. Specifically, we consider a single-mode optical fiber and a group velocity matched pair: an optical soliton and a nearly perfectly reflected dispersive wave, a fiber-optical analogue of the event horizon. By combining (i) an adiabatic approach that is used in soliton perturbation theory and (ii) scattering theory from Quantum Mechanics, we give a quantitative account for the evolution of all soliton parameters. In particular, we quantify the increase in the soliton peak power that may result in spontaneous appearance of an extremely large, so-called champion soliton. The presented adiabatic theory agrees well with the numerical solutions of the pulse propagation equation. Moreover, for the first time we predict the full frequency band of the scattered dispersive waves and explain an emerging caustic structure in the space-time domain

    Asymptotically stable compensation of soliton self-frequency shift

    Get PDF
    We report the cancellation of the soliton self-frequency shift in nonlinear optical fibers. A soliton which interacts with a group velocity matched low intensity dispersive pump pulse, experiences a continuous blue-shift in frequency, which counteracts the soliton selffrequency shift due to Raman scattering. The soliton self-frequency shift can be fully compensated by a suitably prepared dispersive wave.We quantify this kind of soliton-dispersive wave interaction by an adiabatic approach and demonstrate that the compensation is stable in agreement with numerical simulations

    Cancellation of Raman self-frequency shift for compression of optical pulses

    Get PDF
    We study to which extent a fiber soliton can be manipulated by a specially chosen continuous pump wave. A group velocity matched pump scatters at the soliton, which is compressed due to the energy/momentum transfer. As the pump scattering is very sensitive to the velocity matching condition, soliton compression is quickly destroyed by the soliton self-frequency shift (SSFS). This is especially true for ultrashort pulses: SSFS inevitably impairs the degree of compression. We demonstrate numerically that soliton enhancement can be restored to some extent and the compressed soliton can be stabilized, provided that SSFS is canceled by a second pump wave. Still the available compression degree is considerably smaller than that in the Raman-free nonlinear fibers

    Sasa--Satsuma hierarchy of integrable evolution equations

    Get PDF
    We present the infinite hierarchy of Sasa-Satsuma evolution equations. The corresponding Lax pairs are given, thus proving its integrability. The lowest order member of this hierarchy is the nonlinear Schrödinger equation, while the next one is the Sasa-Satsuma equation that includes third-order terms. Up to sixth- order terms of the hierarchy are given in explicit form, while the provided recurrence relation allows one to explicitly write all higher-order terms. The whole hierarchy can be combined into a single general equation. Each term in this equation contains a real independent coefficient that provides the possibility of adapting the equation to practical needs. A few examples of exact solutions of this general equation with an infinite number of terms are also given explicitly
    corecore